A Smart Pointer Class for Subclass Pointers

WEBINAR:
On-Demand

Full Text Search: The Key to Better Natural Language Queries for NoSQL in Node.js


The SmartPtr class by Stefan Tchekanov works nicely for homogenous class objects but it does not allow assignment between base and derived class pointers. I am presenting here a simple template class that performs reference counting garbage collection and supports subclass pointers. The example that follows explains the use of this class:

class B {
... ...
};

class A : public B {
A(const char* s1, const char* s2);
void foo() { ... }
... ...
};

P<B> a = new A("Smart", "Pointer");
P<B> b = a;
P<A> c(a.Reference());
a = 0;
c->foo();

In this example, a derived class (A) object pointed by a base class (B) smart pointer a is assigned back to c -- a smart pointer to the derived class (A). The reference counting and automatically object destruction is similar to other smart pointer implementations (e.g. Stefan's RefCountPtr), but in our case it allows access derived class members (which do not have to be overloaded virtual functions) from a base class smart pointer.

However, this added flexibility comes at a cost. The assignment from pointers a to c in the example above does not conduct type checking. When "down casting" a smart pointer from super (base) class to subclass (derived) class, it is your responsibility to make sure that the pointed object is indeed a subclass object. If anyone out there has a fix for this drawback, please post.

Downloads

Download the demo project - 4 Kb
Download the source - 1 Kb



Comments

  • Virtual Pointers

    Posted by Legacy on 03/21/2002 12:00am

    Originally posted by: Eric Thorbjornsen

    In your source code, you have the following lines:
    
    

    P<A> y(x.Reference()); // y is the 2nd reference

    y->print(); // Strange enough, this does not crash
    // but B::print() was called (MSVC 6.0).
    // Any idea?

    Not sure if you have figured this out by now or not,
    but this is the correct behavior. By allocating a base
    class object B and then casting to the derived class
    object A, all of the virtual calls will access the base
    class virtual methods in B. To simplify your example,
    try this on any C++ compiler:

    #include <stdio.h>
    class B
    {
    public:

    virtual void print() { printf( "class B\n" ); }
    };

    class A : public B
    {
    public:
    void print() { printf( "class A\n" ); }
    };

    int main()
    {
    B* b = new B;
    b->print();

    A* a = (A*)b;
    a->print();

    return 0;
    }

    It's a good interview question ;-)

    As far as the other issue, I'm not sure if there is a way
    to tell if you are correctly casting or not.

    Reply
Leave a Comment
  • Your email address will not be published. All fields are required.

Top White Papers and Webcasts

  • In the past, security was a major obstacle in moving workloads to the cloud. Today, the main obstacle to cloud adoption is the pain of migrating data. But not anymore. A data migration project using purpose-built tools that automate procedures and allow real-time testing can reduce the amount of downtime from hours or days to minutes or seconds. This eBook summarizes the major migration pain points, breaks down the flaws in traditional approaches, and illustrates how modern tools help businesses stay agile by …

  • Mobility is reaching an inflection point in enterprise. Smart enterprises are moving away from tactical point solutions for mobile device management, looking instead for a secure, comprehensive, unified, and future-proof mobile-app platform. Enterprise applications are now at the heart of mobile productivity, data is shared outside the enterprise walls, and the data itself may reside on multiple devices and clouds. Read this guide to learn how a unified endpoint management (UEM) solution is critical to …

Most Popular Programming Stories

More for Developers

RSS Feeds

Thanks for your registration, follow us on our social networks to keep up-to-date