The pattern concept

Bruce Eckel's Thinking in Java Contents | Prev | Next

Initially, you can think of a pattern as an especially clever and insightful way of solving a particular class of problems. That is, it looks like a lot of people have worked out all the angles of a problem and have come up with the most general, flexible solution for it. The problem could be one you have seen and solved before, but your solution probably didn’t have the kind of completeness you’ll see embodied in a pattern.

Although they’re called “design patterns,” they really aren’t tied to the realm of design. A pattern seems to stand apart from the traditional way of thinking about analysis, design, and implementation. Instead, a pattern embodies a complete idea within a program, and thus it can sometimes appear at the analysis phase or high-level design phase. This is interesting because a pattern has a direct implementation in code and so you might not expect it to show up before low-level design or implementation (and in fact you might not realize that you need a particular pattern until you get to those phases).

The singleton

//: SingletonPattern.java
// The Singleton design pattern: you can
// never instantiate more than one.
package c16;
 
// Since this isn't inherited from a Cloneable
// base class and cloneability isn't added,
// making it final prevents cloneability from
// being added in any derived classes:
final class Singleton {
  private static Singleton s = new Singleton(47);
  private int i;
  private Singleton(int x) { i = x; }
  public static Singleton getHandle() { 
    return s; 
  }
  public int getValue() { return i; }
  public void setValue(int x) { i = x; }
}
 
public class SingletonPattern {
  public static void main(String[] args) {
    Singleton s = Singleton.getHandle();
    System.out.println(s.getValue());
    Singleton s2 = Singleton.getHandle();
    s2.setValue(9);
    System.out.println(s.getValue());
    try {
      // Can't do this: compile-time error.
      // Singleton s3 = (Singleton)s2.clone();
    } catch(Exception e) {}
  }
} ///:~ 

The key to creating a singleton is to prevent the client programmer from having any way to create an object except the ways you provide. You must make all constructors private, and you must create at least one constructor to prevent the compiler from synthesizing a default constructor for you (which it will create as “friendly”).

Classifying patterns

The Design Patterns book discusses 23 different patterns, classified under three purposes (all of which revolve around the particular aspect that can vary). The three purposes are:

  1. Creational: how an object can be created. This often involves isolating the details of object creation so your code isn’t dependent on what types of objects there are and thus doesn’t have to be changed when you add a new type of object. The aforementioned Singleton is classified as a creational pattern, and later in this chapter you’ll see examples of Factory Method and Prototype.
  2. Structural: designing objects to satisfy particular project constraints. These work with the way objects are connected with other objects to ensure that changes in the system don’t require changes to those connections.
  3. Behavioral: objects that handle particular types of actions within a program. These encapsulate processes that you want to perform, such as interpreting a language, fulfilling a request, moving through a sequence (as in an iterator), or implementing an algorithm. This chapter contains examples of the Observer and the Visitor patterns.


Comments

  • There are no comments yet. Be the first to comment!

Leave a Comment
  • Your email address will not be published. All fields are required.

Top White Papers and Webcasts

  • On-demand Event Event Date: March 19, 2015 The 2015 Enterprise Mobile Application Survey asked 250 mobility professionals what their biggest mobile challenges are, how many employees they are equipping with mobile apps, and their methods for driving value with mobility. Join Dan Woods, Editor and CTO of CITO Research, and Alan Murray, SVP of Products at Apperian, as they break down the results of this survey and discuss how enterprises are using mobile application management and private app stores to …

  • Who can you trust? Learn from the IBM X-Force team in this new quarterly report how the Internet of Things and IP reputation tracking are transforming the security landscape.

Most Popular Programming Stories

More for Developers

RSS Feeds

Thanks for your registration, follow us on our social networks to keep up-to-date