The hidden implementation

Bruce Eckel's Thinking in Java Contents | Prev | Next

It is helpful to break up the playing field into class creators (those who create new data types) and client programmers [4] (the class consumers who use the data types in their applications). The goal of the client programmer is to collect a toolbox full of classes to use for rapid application development. The goal of the class creator is to build a class that exposes only what’s necessary to the client programmer and keeps everything else hidden. Why? If it’s hidden, the client programmer can’t use it, which means that the class creator can change the hidden portion at will without worrying about the impact to anyone else.

The interface establishes what requests you can make for a particular object. However, there must be code somewhere to satisfy that request. This, along with the hidden data, comprises the implementation. From a procedural programming standpoint, it’s not that complicated. A type has a function associated with each possible request, and when you make a particular request to an object, that function is called. This process is often summarized by saying that you “send a message” (make a request) to an object, and the object figures out what to do with that message (it executes code).

In any relationship it’s important to have boundaries that are respected by all parties involved. When you create a library, you establish a relationship with the client programmer, who is another programmer, but one who is putting together an application or using your library to build a bigger library.

Java uses three explicit keywords and one implied keyword to set the boundaries in a class: public, private, protected and the implied “friendly,” which is what you get if you don’t specify one of the other keywords. Their use and meaning are remarkably straightforward. These access specifiers determine who can use the definition that follows. public means the following definition is available to everyone. The private keyword, on the other hand, means that no one can access that definition except you, the creator of the type, inside function members of that type. private is a brick wall between you and the client programmer. If someone tries to access a private member, they’ll get a compile-time error. “Friendly” has to do with something called a “package,” which is Java’s way of making libraries. If something is “friendly” it’s available only within the package. (Thus this access level is sometimes referred to as “package access.”) protected acts just like private, with the exception that an inheriting class has access to protected members, but not private members. Inheritance will be covered shortly.


[4] I’m indebted to my friend Scott Meyers for this term.



Comments

  • There are no comments yet. Be the first to comment!

Leave a Comment
  • Your email address will not be published. All fields are required.

Top White Papers and Webcasts

  • Live Event Date: December 11, 2014 @ 1:00 p.m. ET / 10:00 a.m. PT Market pressures to move more quickly and develop innovative applications are forcing organizations to rethink how they develop and release applications. The combination of public clouds and physical back-end infrastructures are a means to get applications out faster. However, these hybrid solutions complicate DevOps adoption, with application delivery pipelines that span across complex hybrid cloud and non-cloud environments. Check out this …

  • Hundreds of millions of users have adopted public cloud storage solutions to satisfy their Private Online File Sharing and Collaboration (OFS) needs. With new headlines on cloud privacy issues appearing almost daily, the need to explore private alternatives has never been stronger. Join ESG Senior Analyst Terri McClure and Connected Data in this on-demand webinar to take a look at the business drivers behind OFS adoption, how organizations can benefit from on-premise deployments, and emerging private OFS …

Most Popular Programming Stories

More for Developers

RSS Feeds