Memory Allocation for High-Dimensional Data Structures

Environment: Windows NT SP5, Windows 95b/98, Visual C++ 6

1. General Methods

For a very large application, dynamic memory allocation is common in C/C++ programming. For example, I ported Basin Modeling application from SUN workstation to PC 486 in 1992, cutting memory usage up to 90%. Generally two types of dynamic memory allocation methods are wildly used to deal with high dimensional data structures. One is to use 1D to represent nD as shown in the follow:
// ignore pointer validation and use malloc and free for instance
Type* p = (Type *)malloc(s1*s2* ... *sn*sizeof(Type));
for(i1 = 0; i1 < s1; i1 ++) 
 for(i2 = 0; i2 < s2; i2 ++)
  //... 
  for(in = 0; in < sn; in ++)
   p[(...((i1*s2+i2)*s3+i3)...)*sn+in] = ...; 
   //do something using p 
free(A);
The other is directly to use nD as shown in the follow:
Type *p1, **p2, ..., **...*pn;
  
p1 = (Type *)malloc(sizeof(Type)*s1*s2*...*sn*sizeof(Type));
p2 = (Type **)malloc(sizeof(Type*)*s1*s2*...*sn-1);
//...
pn = (Type **...*)calloc(sizeof(Type**...*)s1, size);

// need assign address properly
for(i = 0; i < s1*s2*...*sn-1; i ++)
 *(p2+i) = &p1[sn*i*sizeof(Type)];

for(i = 0; i < s1; i ++)
 *(p3+i) = &p2[sn-1*i];
//...

for(i = 0; i < s1*s2*...*sn-2; i ++)
 *(pn+i) = &pn-1[s2*i];

for(i1 = 0; i1 < s1; i1 ++) 
 for(i2 = 0; i2 < s2; i2 ++)
  //...
  for(in = 0; in < sn; in ++)
   pn[i1][i2]...[in] = ...; 
   //do something using pn

free(**...*p);  //(n-1)-dimensional pointer

//...

free(*p);
free(p);

2. Source Code

  1. MemA.h uses C++ template and operator overloading to implement 1D, 2D, and 3D based on method 1. It is easy to extend to high dimension, such as 4D and 5D. It is especially useful to port applications from Fortran to C++.
      Member functions
    • bool CDynArray<Type>::SetSize(int i);
    • bool CDynArray<Type>::SetSize(int i, int j);
    • bool CDynArray<Type>::SetSize(int i, int j, int k);
    • Type& CDynArray<Type>::operator ()(int i);
    • Type& CDynArray<Type>::operator ()(int i, int j);
    • Type& CDynArray<Type>::operator ()(int i, int j, int k);
    • void CDynArray<Type>::Remove();
  2. MemB.h uses C++ template to implement 1D, 2D, and 3D based on method 2.
      Member functions
    • // One dimension
    • Type* CMalloc<Type>::Malloc(int I);
    • void CMalloc<Type>::Free(T*& X);
    • // Two dimension
    • Type** CMalloc<Type>::Malloc(int I, int J);
    • void CMalloc<Type>::Free(T**& X);
    • // Three dimension
    • Type** CMalloc<Type>::Malloc(int I, int J, int K);
      			
    • void CMalloc<Type>::Free(T***& X);
  3. MemC.h and MemC.c only use C to implement 2D and 3D based on method 2.
      Member functions
    • void** Malloc2(int, int, size_t);
    • void*** Malloc3(int, int, int, size_t);
    • void Free2(void**);
    • void Free3(void***);

3. Demo Project

MemDemo.cpp demonstrates how to use memory allocation functions in the above files. It tests both float, double, and data structure types.

Downloads

Download demo project - 6 Kb
Download source - 3 Kb


Comments

  • Wonderfull

    Posted by Legacy on 07/26/2003 12:00am

    Originally posted by: Naresh Prajapati

    I was just handling my data structure as conventional way, got yr artical and made all d.s standard & efficient. Thanks

    Reply
Leave a Comment
  • Your email address will not be published. All fields are required.

Top White Papers and Webcasts

  • Webinar on September 23, 2014, 2 p.m. ET / 11 a.m. PT Mobile commerce presents an array of opportunities for any business -- from connecting with your customers through mobile apps to enriching operations with mobile enterprise solutions. Join guest speaker, Michael Facemire, Forrester Research, Inc. Principal Analyst, as he discusses the new demands of mobile engagement and how application program interfaces (APIs) play a crucial role. Check out this upcoming webinar to learn about the new set of …

  • On-demand Event Event Date: September 10, 2014 Modern mobile applications connect systems-of-engagement (mobile apps) with systems-of-record (traditional IT) to deliver new and innovative business value. But the lifecycle for development of mobile apps is also new and different. Emerging trends in mobile development call for faster delivery of incremental features, coupled with feedback from the users of the app "in the wild." This loop of continuous delivery and continuous feedback is how the best mobile …

Most Popular Programming Stories

More for Developers

Latest Developer Headlines

RSS Feeds