COMMSPY: A serial port monitor

Attempting to monitor the serial port can be a frustrating experience. Without buying expensive shrink wrapped software, there's really nothing available. That was my motivation for creating an MFC program called COMMSPY. COMMSPY is a dialog based, serial port monitor for Windows.  It is a Windows GUI built around the ever popular Visual C++ SDK sample "tty.c", and built under Visual C++ 4.2+. It provides a user friendly interface, with full customization of the port and display settings only a few clicks away. COMMSPY will remember every one of the settings, including the position of the dialog, and restore them the next time you run it.

To use COMMSPY, you'll need a "break-out" cable. Connect two of its ends between the two devices communicating, and the third end to either COMM1 or COMM2 of the PC on which COMMSPY is running. Then update the communication settings, setting the port to either COMM1 or COMM2, whichever you hooked the third end of the cable to. This is the COMMSPY main window:

Figure 1: COMMSPY main window

It is intentionally laid out to look like an oscilloscope. The window on the left is the serial port output, in the middle the serial port settings, on the right the display settings, and on the bottom the command buttons. To start monitoring the serial port, simply select "Start!":

Figure 2: COMMSPY main window while monitoring

The serial port output window changes to full dialog mode, hiding unused controls.  To stop monitoring, select "Stop!".

I ran into some problems while developing COMMSPY. First, I had problems getting the thread to terminate. Since its sitting inside WaitForCommEvent(), the only way to communicate with the thread is through a comm event. It turns out that WaitForCommEvent() will instantly return if the comm mask is changed with
SetCommMask(). I was doing that, but it wasn't working. Then I noticed that an OVERLAPPED structure must be passed to WaitForCommEvent() in order for that to work correctly. Second, the controls on the dialog were slow to repaint when monitoring started. This was because I was originally connecting to the COM port AND starting the thread, then rearranging controls. When the second threads starts, it and the main thread start competing for CPU cycles, which slows down the repaint of the controls. When I split the monitoring functionality (GCommMonitor) up (into Connect() and Monitor()), and rearranged the controls in-between calling those two functions, everything worked smoothly.

Below is a few diagrams which will demonstrate a few possible configurations of the "break-out" cable. The below samples assume you have one or more PCs, and some external device with which it is (the are) communicating:

Figure 3: PC#1 communicating to external device via COMM2, COMMSPY monitoring COMM1

Figure 4: PC#1 communicating to external device via COMM1, COMMSPY, on PC#2, is monitoring COMM1

These are the features I really wanted to add to this version, but never had the time:

  • Resume scrolling - as new data is monitored, the output window is automatically scrolled. To stop scrolling, the user should be able to simply click anywhere in the output window. To resume scrolling, they would select the command button "Continue Scrolling"
  • Trigger - when a user specified stream of data comes across the port, alert the user.
  • Print - print all or a selection of the output window.
  • Resizable dialog - make the dialog resizable, adjusting the controls as necessary.

Download source (includes compiled EXE) - 147 KB


Leave a Comment
  • Your email address will not be published. All fields are required.

Top White Papers and Webcasts

  • Anthony Christie, the Chief Marketing Officer for Level Communications, is responsible for customer experience, worldwide marketing and product management. In this informative asset, he shares his insights into why a private network connection to cloud-bases applications is the right decision for your enterprise. Download now to find out more.

  • Moving from an on-premises environment to Office 365 does not remove the need to plan for disruptions or reduce the business risk requirements for protecting email services. If anything, some risks increase with a move to the cloud. Read how to ease the transition every business faces if considering or already migrating to cloud email. This white paper discusses: Setting expectations when migrating to Office 365 Understanding the implications of relying solely on Exchange Online security Necessary archiving …

Most Popular Programming Stories

More for Developers

RSS Feeds

Thanks for your registration, follow us on our social networks to keep up-to-date