Expandable, Data Type-Neutral Buffer Class

CBuffer is an expandable buffer class which can expand when needed and allows insertion of data and many operation on buffer

Using the CBuffer Class

In order to use the class, simply do the following. (Remember that if any of this is unclear, I have included a demo application that will hopefully clear up any misunderstandings.
  1. Instantiate the CBuffer object
  2. Call the CBuffer Init method
  3. CBuffer:Init(int nSizeOfBuffer, int nNbrOfElements, 
      int nIncrementalGrowthValue)
  4. Insert data into the buffer by using any of the following mechanisms:
    • int CBuffer::PutData(BYTE *pBuff)
    • void CBuffer::operator+=(BYTE *pBuff)
    • int CBuffer::InserData(BYTE * pBuff,int nOffset)
  5. Retrieve data from the buffer by calling any of the following methods:
    • int CBuffer::GetData(BYTE * pBuff,int nIndex)
    • BYTE *CBuffer::GetPointer(int nIndex) const
  6. Use any of the following helper methods
    • m_Buffer.GetSize();
    • m_Buffer.GetTotalElements();
    • m_Buffer.GetStructureSize();
    • m_Buffer.GetFreeSp();
    • m_Buffer.GetFreeStSp();

Header File (lists available CBuffer methods)


#pragma once

class CBuffer 
{
public:
 CBuffer();
 virtual ~CBuffer();

 int Init(int,int,int);
 int PutData(BYTE*);
 void operator+=(BYTE *);
 
 int InserData(BYTE*,int);
 int GetData(BYTE*,int);
 int ExpandBuff(int);
 
 int GetSize();
 int GetTotalElements();
 int GetStructureSize();
 int GetFreeSp();
 int GetFreeStSp();
 
 BYTE *GetPointer(int nIndex)const;
 BYTE *CBuffer::operator[](int nIndex)const;
 
 private:
 BYTE *m_pBuff;
 int m_nStructSize;
 int m_nTotal;
 int m_nOffset;
 int m_nSize;
 int m_nStructOffset;
 int m_nIncerment;
};

Downloads

Download demo project - 14 Kb


Comments

  • stl vector

    Posted by Legacy on 01/28/2002 12:00am

    Originally posted by: stuart

    Why not use an STL vector<BYTE> and be done with it? What advantage does CBuffer add?

    Reply
  • CByteArray alternative

    Posted by Legacy on 02/14/2000 12:00am

    Originally posted by: Adrian Stanley

    I can't see that this offers much more than the existing MFC class CByteArray, which also automatically grows, and has an Append method for adding new data to the end.

    For 32 bit programs not using MFC, I'd suggest using the STL containers.

    Where CBuffer would be useful is in non MFC 16 bit code, but you'd have to remove all the dependencies on MFC first. This won't be that difficult, as it is mainly the TRACE and ASSERT macros. You might also consider replacing Win32 APIs (e.g., ZeroMemory) with the CRT equivalents (e.g., memset), then you'd have a truly portable class.

    Reply
Leave a Comment
  • Your email address will not be published. All fields are required.

Top White Papers and Webcasts

  • Live Event Date: October 29, 2014 @ 11:00 a.m. ET / 8:00 a.m. PT Are you interested in building a cognitive application using the power of IBM Watson? Need a platform that provides speed and ease for rapidly deploying this application? Join Chris Madison, Watson Solution Architect, as he walks through the process of building a Watson powered application on IBM Bluemix. Chris will talk about the new Watson Services just released on IBM bluemix, but more importantly he will do a step by step cognitive …

  • Managing your company's financials is the backbone of your business and is vital to the long-term health and viability of your company. To continue applying the necessary financial rigor to support rapid growth, the accounting department needs the right tools to most efficiently do their job. Read this white paper to understand the 10 essentials of a complete financial management system and how the right solution can help you keep up with the rapidly changing business world.

Most Popular Programming Stories

More for Developers

Latest Developer Headlines

RSS Feeds