Tip: An Optimized Formula for Alpha Blending Pixels

When you have a formula, you could see if some of the operations could be optimized and you could see if the integer to float conversions could be simplifying for the formula. I will demonstrate this by using the alphablend formula in MSDN. This may be useful if you are writing your own custom-optimized alphablend function.

Note in the formula that S is one of the source primary colors(RGB), D is one of the destination primary colors(RGB) and A is the alpha channel. S, D and A are byte integers (that is, value is from 0 to 255).

First, you should attempt to remove the expensive integer to float conversion through rearrangement. Below is the original BLENDFUNCTION formula in MSDN.

As shown below, the subtraction is executed to invert the alpha first, before the division by 255.0.

Next, the multiplications are done before the divisions. If the multiplications are done first, the results of the divisions will not be 0.0 to 1.0 but 0 to 255, thus you can eliminate the float values and the integer to float conversions. You may ask, since S, D and A are byte integers, will the byte integer overflow if the multiplications execute first? The answer is no. Because in C/C++, byte and short integers are promoted to full integers before any computation begins.

Since both divisions are the same (both are divided by 255), they can be grouped together as shown below. In that case, one division has been eliminated.

As a further optimization, since 255 is close to 256, the division could be replaced by 255 with shift to the right by 8 as shown below. Of course, this optimization would sacrifice some accuracy, for alphablend operations, this is okay.

I have made a benchmark application to benchmark the alphablending of each formula for 1000 times. As shown in the screenshot below, the "Unoptimized" option is the original MSDN formula, the "Optimized" option is the new improved formula and the "Very Optimized" option is the new improved formula with right shifting to replace the division.

The results for a release build on my machine, are as follows

Unoptimized: 10030 milliseconds
Optimized: 3790 milliseconds
Very Optimized: 2821 milliseconds



About the Author

Wong Shao Voon

I guess I'll write here what I does in my free time, than to write an accolade of skills which I currently possess. I believe the things I does in my free time, say more about me.

When I am not working, I like to watch Japanese anime. I am also writing some movie script, hoping to see my own movie on the big screen one day.

I like to jog because it makes me feel good, having done something meaningful in the morning before the day starts.

I also writes articles for CodeGuru; I have a few ideas to write about but never get around writing because of hectic schedule.

Downloads

Comments

  • wronge?

    Posted by kiba on 06/06/2012 07:19am

    i dont know but its that wronge x 8 = x / 256 but thats must be x / 255 e.g. srcColor (0,0,0,0), dstColor (128,128,128,128) ((0 * 0) + (128 * (255-0))) / 256 = 127, wronge ((0 * 0) + (128 * (255-0))) / 255 = 128, right

    Reply
  • Can do faster I think...

    Posted by legendh6 on 07/06/2009 07:06am

    You can directly rewrite the equation as D+A*(S-D)/255 You save a multiplication if I am correct... You can even use your /255 tip on A*(S-D) and loose maybe even less by approximating only one term of the addition.

    • Alphablend is not correct

      Posted by CBasicNet on 07/12/2009 10:25pm

      Hi legendh6,
      
      I have tried your formula but the alphablend is not correct when I checked "show graphics" option. If you want my edited source (for trying your formula) to tweak your formula, you can email me cbasicnet[at]yahoo[.]com[.]sg
      
      Thanks!!

      Reply
    Reply
  • a bit faster please?

    Posted by vlad_tepesch on 04/03/2009 08:24am

    it would be possibly slightly faster if replacing (255-A) with (~A) (bitwise not) So no 'mov' of a constant is required. so: (S*A + D* ~A)>>8

    Reply
  • Am happy!

    Posted by Alok Govil on 04/02/2009 03:39pm

    2.5X improvement just by rearranging the formula! The inaccurate one would result in issues if the blending is done on a part of the image since boundary may appear.

    Reply
Leave a Comment
  • Your email address will not be published. All fields are required.

Top White Papers and Webcasts

  • Discover how to quickly remediate aggressive security threats. Read this report from Forrester Research and get the facts about new automated compliance processes and how they will reduce your organization's vulnerability and risk. Learn to: Adopt a set of cyber "Rules of Engagement" Define the appropriate response through the "Response Index" Create actionable response metrics Ensure multiple levels of audit and reinforcement Plus, find out how to better align security and operations teams and put the …

  • Employees must exchange sensitive emails with customers and partners. These emails might contain protected health information, protected financial information, or corporate information that should not be made public. Globalscape® Mail Express® allows you to encrypt the emails that it manages so that no one but the sender and recipient--not even the administrator--can view the contents of the email. "Secure the Transfer of Sensitive Emails" is the property of GlobalSCAPE

Most Popular Programming Stories

More for Developers

RSS Feeds

Thanks for your registration, follow us on our social networks to keep up-to-date