
Delta Forth .NET
Version 1.0

World’s first Forth compiler for the .NET platform

http://www.dataman.ro/dforth

Reference Guide

Valer BOCAN
January 2002

Delta Forth .NET Reference

Valer BOCAN – January 2002
2

Chapter 1
Overview

Delta Forth is a non-standard Forth dialect. It has several limitations over
traditional standards; however it may be an excellent starting point for beginners.
The traditional compreter (compiler – interpreter) approach of other implementations
did not appeal when the Delta dialect was designed since computers evolved
enormously since the original Forth specification was written. Instead, we deal with
compiled programs and thus several original Forth words – mainly related to chained
execution - have lost their meaning (see STATE, COMPILE, IMMEDIATE, a.s.o.).
Please consult this document when you need information about the Delta dialect.

It has been stated that a complete traditional Forth environment can be coded by a
single person in a three month time. I managed to release the beta 1 version of
Delta in half that time. Despite the short time it took to be developed, this tool has a
long history, being a continuation of the award-winning Delta Forth for Java
project that I started back in 1997. At that time, it was the first Forth compiler for
Java and was a real surprise when I presented it as my graduation project two years
later. The .NET compiler is used to write a part of the software for my Ph.D. thesis.

This software is free of charge. However, I spent hundreds of hours designing and
developing it, so if you like it please make a donation to a charity of your choice then
drop me a note.

The C# source code is approximately 4000 lines.

Delta Forth .NET Reference

Valer BOCAN – January 2002
3

Chapter 2
Delta Forth .NET Basics

Overview of a Forth program

As in any Forth dialect, programs contain word definitions. A word is a logical
structure and association of items that perform a well defined task. Let’s take the
well-known example, Hello World:

: main
.”Hello world!”

;

Here we define de word MAIN and that is the starting point of any program. MAIN
has to be defined; either we create an executable or a library.

Calling a word is done simply by writing the name of it:

: main
DisplayText

;
: displaytext

.”Hello world!”
;

We may notice two things: Forth is not case-sensitive and the order in which
the words are defined is not important.

Comments are very important within code, the reason is obvious. There are two
types of comments in Forth: multi-line and single-line. Our example becomes:

: main \ Program starting point
DisplayText \ Call the word to display the text

;
(Word to display the greeting note

Input: None
Output: None
Author: John Doe

)
: DisplayText

.”Hello world with comments!”
;

If you need to spread the program across multiple source files, you have to combine
the result to be compiled. For this, we use the LOAD directive which is similar to
#include in C and C++. Here is an example:

(Source file: DisplayWords.4th)
: DisplayText

.”Hello world from another file!”
;

Delta Forth .NET Reference

Valer BOCAN – January 2002
4

(Source file: Main.4th)
load DisplayWords.4th

: main
DisplayText

;

If two files include each other, the compiler will issue an error.

Stacks

Forth is a typeless language and it relies on two stacks to perform operations:
• The Forth Stack is made of 32-bit integers and it is the main stack. The

majority of the Forth words modify this stack in a way or another. The default
stack size is 524288 cells, but it may be modified using the /FS option.

• The Return Stack is used for brief temporary storage and for holding the
current value of the DO-LOOP structure. The default size is 1024, but it may
be modified using the /RS option.

Loading a value on the stack is straightforward:

: main
10 . \ Load 10 on the stack, then display it

;

Delta Forth .NET Reference

Valer BOCAN – January 2002
5

Chapter 3
Primitives
Primitives are built-in words used to perform basic operations.

Memory Operations

Word Description / Action
@ (addr --- n) "fetch" Reads the content of a specified memory location and

places the result on top of stack
? (addr ---)
"question-mark"

Displays the content of a memory location

! (n addr ---) "store" Stores a value at the specified memory address

+! (n addr ---) "plus
store"

Adds a value to the content of a specified memory
address

Arithmetic Operations

Word Description / Action

+ (n1 n2 --- n1+n2) Addition
- (n1 n2 --- n1-n2) Subtraction

* (n1 n2 --- n1*n2) Multiplication
/ (n1 n2 --- n1/n2) Division

MOD (n1 n2 --- n) Division remainder

/MOD (n1 n2 --- nr nres) Division remainder and result
*/ (n1 n2 n3 --- n1*n2/n3) Scaling operator

*/MOD (n1 n2 n3 --- nr nres) Scaling operator

MINUS (n --- -n) Changes the sign of the number
ABS (n --- |n|) Absolute value of number

MIN (n1 n2 --- min(n1,n2)) Computes the minimum of two values

MAX (n1 n2 --- max(n1,n2)) Computes the maximum of two values
1+ (n --- n+1) Increments the top of stack by 1

2+ (n --- n+2) Increments the top of stack by 2

0= (n --- b) Test for "zero-equal"
0< (n --- b) Test for "zero-less"

= (n1 n2 --- b) Test for "equal"

< (n1 n2 --- b) Test for "less"
> (n1 n2 --- b) Test for "greater"

<> (n2 n2 --- b) Test for "not-equal"

Delta Forth .NET Reference

Valer BOCAN – January 2002
6

Logical Operations

Word Description / Action
AND (n1 n2 --- b) Returns 1 if both initial values are not zero

OR (n1 n2 --- b) Returns 1 if at least one initial value is not zero

NOT (n1 --- b) Negates the initial value

Bitwise Operations

Word Description / Action
~AND (n1 n2 --- n) Bitwise AND
~OR (n1 n2 --- n) Bitwise OR

~XOR (n1 n2 --- n) Bitwise XOR

~NOT (n --- m) Bitwise NOT

Stack Operations

Word Description / Action
DUP (n --- n n) Duplicates the value on the top of the stack

-DUP (n --- n : n n) Duplicates the value on the top of the stack if
different from 0

DROP (n ---) Drops the element on top of the stack

SWAP (n1 n2 --- n2 n1) Swaps the two elements of top of the stack

OVER (n1 n2 --- n1 n2 n1) Duplicates the element before the on top of the
stack

ROT (n1 n2 n3 --- n2 n3
n1)

Rotates the last three elements on the top of the
stack

SP@ Returns the current position of the parameter stack
pointer

RP@ Returns the current position of the return stack
pointer

SP! Flushes the parameter stack

RP! Flushes the return stack

Return Stack Operations

Word Description / Action
>R (n ---) "to-R" Transfers the element to the top of return stack

R> (--- n) "R-from" Transfers the element to the top of the stack

I (--- n) Copies the element from the return stack to the parameter
stack

Delta Forth .NET Reference

Valer BOCAN – January 2002
7

Display Operations

Word Description / Action
EMIT (c ---) Displays the character with the given ASCII code

CR (---) Emits the CR and LF characters

SPACE (---) Displays a space

SPACES (n ---) Displays a given number of spaces
."<text>" (---) Displays the text between quotes

TYPE (addr n ---) Displays a string of specified length from the given address

Keyboard Operations

Word Description / Action
KEY (--- c) Places on the stack the ASCII code of the key pressed
EXPECT (addr n ---) Reads at most n characters and places their codes

starting from address addr
QUERY (---) Awaits at most 80 characters to be typed and places

them at the area pointed by TIB

Keyboard Operations

Word Description / Action
FILL (addr n c ---) Fills n cells from address addr with value c
ERASE (addr n ---) Fills with 0 n cells from address addr

BLANKS (addr n ---) Fills with 32 (blank) n cells from address addr
CMOVE (addr1 addr2 n
---)

Moves n cells from address addr1 to address addr2

COUNT (addr --- n) Counts the number of characters from address addr up
to the terminating 0

"<text>" (addr ---) Places the "text" at address addr

Conversions

Word Description / Action
STR2INT (--- n) Converts the string at TIB to an integer and places it on

the stack
INT2STR (addr n ---) Converts the value n to a string and places it to addr

Delta Forth .NET Reference

Valer BOCAN – January 2002
8

Miscellaneous

Word Description / Action
EXIT (---) Leaves the current word unconditionally

System variables

Word Description / Action
PAD Points to a 64-cell work area

S0 Parameter stack origin

R0 Return stack origin

TIB Points to a 80-cell buffer used in I/O operations

Delta Forth .NET Reference

Valer BOCAN – January 2002
9

Chapter 4
Constants
Delta Forth allows the use of integer and string constants.
Numbers encountered outside words are placed in a virtual stack. Each constant
definition “uses” the number on top of stack.

10 constant con1 \ Define an integer constant
20 constant con2 \ Define another integer constant
“The sum is” constant text \ Define a string constant

: main
tib text \ Dump the text in 'text' at TIB
tib dup count type \ Type the text at TIB
con1 con2 + \ Calculate the sum
. \ Display the sum

;

When encountered in a word definition, a string constant places the text at the
address found on top of stack.

Delta Forth .NET Reference

Valer BOCAN – January 2002
10

Chapter 5
Global and Local Variables
Global variables are defined outside words and their size is by default 1. This may be
modified up to an arbitrary size with the ALLOT primitive:

variable X \ Variable with size 1 cell
variable Y 19 allot \ Variable with size 1 + 19 = 20 cells

When encountered in a word definition, a variable places its address on the stack.

variable var
: main

0 var ! \ Initialize variable
var dup @ 1+ ! \ Increment variable content

;

Unlike global variables, local variables are only visible within the word they have
been defined:

: word1
variable locvar
[...]

;

: main
locvar @ . \ Error, locvar is not accessible

;

Delta Forth .NET Reference

Valer BOCAN – January 2002
11

Chapter 6
Libraries
Delta Forth .NET allows you to create libraries that can be later called using
reflection. A library is no different from a regular Forth program, just the LIBRARY
keyword and the /DLL compiling option.
The name of the .NET class to be created is specified using the LIBRARY keyword. If
you don’t specify a name, DeltaForthEngine is used by default. You are still required
to create the function MAIN which in this case can be used to initialize the Forth
environment (variables, settings, etc.)

library MathOp

: main \ Library entry point
\ Your code here

;

: addition
[...]

;

: subtraction
[...]

;

Now compile the above code using the /DLL option and the result will be a DLL file
that may be invoked from other languages using reflection.

To invoke the words defined in the MathOp library, we can use the following
sequence:

extern addword mathop.dll MathOp.addition

: main
addword

;

We assume that the library is in file MathOp.dll. The EXTERN keyword defines the
external word addword, which at runtime calls the method addition of the class
MathOp, in the file mathop.dll.

Delta Forth .NET Reference

Valer BOCAN – January 2002
12

Chapter 7
Control Structures

IF-ELSE-THEN

The conditional structure is used to take decisions based on some condition. In
Forth, the condition is true if the top of stack is non-zero and false if otherwise.

<condition> IF <branch for true> THEN

<condition> IF <branch for true> ELSE <branch for false> THEN

: main
10 30 \ We’ve got two number
> \ Compare them
if

.”Branch for true”
else

.”Branch for false”
;

The number of nested IF structures is not limited.

DO-LOOP

This is similar to the FOR statements of other languages. This structure is used when
the number of wanted iterations is known in advance.

fv iv DO [....] LOOP

fv iv DO [....] +LOOP fv – final value, iv – initial value

The DO statement transfers the initial and the final value to the return stack and
begins execution of statements after DO. LOOP peeks the stack and if the initial
value is equal to or greater than the final value, exits the loop, otherwise it
increments the current value by 1. If the value needs to be incremented by
something else than 1, you may use +LOOP to end the structure.

: main \ Display numbers from 0 to 100
100 0
do

I . space
loop

;

: main \ Display numbers from 0 to 100 step 2
100 0
do

I . space

Delta Forth .NET Reference

Valer BOCAN – January 2002
13

2 \ Step
+loop

;

If for any reason the loop needs to be left, use the LEAVE statement, which forces
early termination of the structure.

BEGIN-AGAIN

This is an infinite loop.

BEGIN [...] AGAIN

: main
begin
.”Blah...”
again

;

BEGIN-UNTIL

This is similar to final-test constructs in other languages. The sequence between
BEGIN and UNTIL is executed until a condition is met.

BEGIN [...] <condition> UNTIL

: main
variable cnt \ Local variable
0 cnt ! \ Initialize 'cnt' to 0
begin

cnt @ 1+ cnt ! \ Increment variable by 1
cnt ? space \ Display the counter value
cnt @ 25 > \ Test if the counter is less than 25

until
;

BEGIN-WHILE-REPEAT

This is similar to initial-test constructs in other languages. The execution begins with
the sequence between BEGIN and WHILE. The WHILE statement checks the top of
stack and if the value is true (non-zero), execution continues until REPEAT, then the
process starts again. If the value is false, structure execution is aborted.

BEGIN [...] <condition>WHILE [...] REPEAT

: main
 variable cnt \ Local variable
 0 cnt ! \ Initialize 'cnt' to 0
 begin

cnt ? space \ Display the counter value
cnt @ 25 < \ Test if the counter is less than 25

Delta Forth .NET Reference

Valer BOCAN – January 2002
14

 while
cnt @ 1+ cnt ! \ Increment variable by 1

 repeat
;

CASE-ENDCASE

The selector structure has the following general structure:

<selector value>
CASE

<case_value> OF [...] ENDOF
<case_value> OF [...] ENDOF

[...]

<case_value> OF [...] ENDOF
ENDCASE

: main
 1 test cr \ Test for 1
 2 test cr \ Test for 2
 3 test cr \ Test for 3
 4 test cr \ Test for 4
;
: test
 case
 1 of ."One" endof
 2 of ."Two" endof
 3 of ."Three" endof
 ."Something else"
 endcase
;

Delta Forth .NET Reference

Valer BOCAN – January 2002
15

Chapter 8
Compiler Error Messages

Identifier should be declared outside words.
• The specified identifier should be declared outside words. Such examples are

CONSTANT, ALLOT etc.

Identifier should be declared inside words.
• The specified identifier should be declared inside words. Such examples are

IF, DO, WHILE etc.

Identifier is a reserved identifier.
• You cannot redeclare the meaning of the built-in identifiers.

Identifier is an invalid identifier.
• The identifier is not properly defined (should not begin with a figure and be

less than 31 characters in length.

Unable to define constant. Number or string required before CONSTANT.
• The “virtual” stack is empty. You need to specify at least an integer or a

string before you can define constants.

Unable to allot variable space. Number needed before ALLOT.
• You did not specify the amount by which to increase the size of the variable.

Unexpected end of file.
• The file ended before the compiler found certain expected constructs.

Wrong constant type specified for ALLOT. Use an integer.
• You specified a string where an integer was needed.

Nested words are not allowed.
• You must end a word definition before you start another one.

Malformed control structure.
• See the definition of the control structures and follow the specifications.

Control structures must be terminated before ';'
• Control structures cannot spread across multiple words.

Program starting point is missing. Please define the word MAIN.
• You must define a function MAIN in a Delta Forth program.

Constant redefines an already defined constant or variable.
Variable redefines an already defined constant or variable.

• Global variables and constants share the same name space, thus the names
must be unique. You cannot have a variable and a constant with the same
name.

Delta Forth .NET Reference

Valer BOCAN – January 2002
16

Chapter 9
Compiler Command-Line Options

The Delta Forth .NET compiler has a few options that you can set when you compile
programs.

Command-line syntax:

DeltaForth.exe <source file> [options]

<source file>
• Represents the Forth source file to be compiled.

/NOLOGO
• Disables the display of copyright logo

/QUIET
• Disable the display of any messages on the screen, except for the compiling

error message

/CLOCK
• Displays the timings for various compiling stages, as well as the total amount

of time

/EXE
• Generates EXE files (this option is default)

/DLL
• Generates DLL files

/NOCHECK
• Disables the generation of stack bounds checking code. Any operation that

causes a stack overflow or underflow will throw an exception

/FS:<size>
• Specifies the Forth stack size at runtime. Default is 524288 cells.

/RS:<size>
• Specifies the return stack size at runtime. Default is 1024 cells.

/MAP
• Generates map information (address and size of variables, type and value of

constants, external words, etc.)

/OUTPUT=<target file>
• Sets the name and directory of the target file, in case the default is not

suitable

